the results presented here, stereoselective glycosylations of 2 . acylated ribosides which proceed via bridged oxonium ion in termediates exhibit no Lewis acid dependency.

In conclusion, we have presented short, efficient preparations of the oxathiolanyl and dioxolanyl nucleoside analogues, which, as a consequence of their low toxicity, should prove to be important antiretroviral agents. The concept of in situ complexation which we have used here for controlling stereochemistry in the synthesis of these nucleoside analogues should also be applicable to a wide range of other systems and for the preparation of several analogues of 5 and 6 . Further studies involving the preparation and biological activity of these compounds as well as other examples of these types of stereocontrolled glycosylation reactions will be the subject of future reports.

Acknowledgment. This work was supported, in part, by NIH Grant AI-28731. W.B.C. thanks Merck, Sharp and Dohme for a Merck postdoctoral fellowship.
Supplementary Material Available: Physical data including ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, MS, analytical, and IR data for compounds 5 , $6,8,9,11-13$, and 15 (4 pages). Ordering information is given on any current masthead page.
(14) (i) For $\mathrm{N}_{3}: \beta: \alpha=1: 1$. Chu, C. K.; Beach, J. W.; Ullas, G. V.; Kosugi, Y. Tetrahedron Lett. 1988, 5349. (ii) For CN: $\beta: \alpha=4: 5$. Okabe, M.; Sun, R.; Tam, S. T.; Todaro, L. J.; Coffen, D. L. J. Org. Chem. 1988, 53, 4780. (iii) For SPh: $\beta: \alpha=1: 2$. Chu, C. K.; Raghavachari, R.; Beach, J. W.; Kosugi, Y.; Ullas, G. V. Nucleosides Nucleotides 1989, 8, 903.

A Phosphorus Analogue of a Semibridging Aryl Isocyanide Ligand: Synthesis and Structure of $(\mathbf{C l})\left(\mathbf{P E t}_{3}\right) \mathbf{P t}(\mu-\mathbf{C}=\mathbf{P R}) \mathbf{P t}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{Cl})$

Hyoung Jun, Victor G. Young, Jr., ${ }^{\dagger}$ and Robert J. Angelici*
Department of Chemistry, Iowa State University
Ames, Iowa 50011
Received August 9, 1991
Alkyl and aryl isocyanides ($\mathrm{C} \equiv \mathrm{NR}$) are well-known ${ }^{1}$ ligands in transition-metal complexes. They adopt either a terminal (A, Chart I) or bridging (B) mode of coordination to one or two metals, respectively. The phosphorus analogues ($\mathrm{C} \equiv \mathrm{PR}$) ${ }^{2}$ of isocyanides are unknown and appear to be unstable ${ }^{3}$ relative to the $\mathrm{RC} \equiv$ P isomer. ${ }^{4}$ To our knowledge, no complexes containing either terminal (C, Chart I) or bridging (D) $\mathrm{C} \equiv \mathrm{PR}$ ligands have been reported. In this paper, we describe the stepwise synthesis of $(\mathrm{Cl})\left(\mathrm{PEt}_{3}\right) \mathrm{Pt}(\mu-\mathrm{C}=\mathrm{PR}) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{Cl})(2)$, where $\mathrm{R}=2,4,6$ -tri-tert-butylphenyl, and establish that it contains a semibridging $\mathrm{C} \equiv \mathrm{PR}$ ligand.

The reaction (eq 1) of $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{PR}^{5}(0.359 \mathrm{~g}, 1.00 \mathrm{mmol})$ with equimolar $\operatorname{Pt}\left(\mathrm{PEt}_{3}\right)_{4}{ }^{6}(0.667 \mathrm{~g}, 1.00 \mathrm{mmol})$ in 20 mL of benzene at room temperature under nitrogen for 30 min gives the moderately air stable, pale yellow, oxidative-addition product 1, which is isolated in 85% yield by evaporating the reaction solution to dryness and recrystallizing the residue from hexanes at $-78^{\circ} \mathrm{C}$.

[^0]

Figure 1. ORTEP drawing of $(\mathrm{Cl})\left(\mathrm{PEt}_{3}\right) \mathrm{Pt}(\mu-\mathrm{C}=\mathrm{PR}) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{Cl})$ (2). Selected bond distances (\AA) and angles (deg) are $\mathrm{Pt}(1)-\mathrm{Pt}(2)=2.6751$ (5), $\mathrm{Pt}(1)-\mathrm{C}(1)=2.107(9), \mathrm{Pt}(2)-\mathrm{C}(1)=1.89(1), \mathrm{P}(1)-\mathrm{C}(1)=1.67$ (1), $\mathrm{P}(1)-\mathrm{C}(2)=1.89(1), \mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)=110.7(5), \mathrm{Pt}(1)-\mathrm{C}(1)-$ $\mathrm{Pt}(2)=83.8$ (4), $\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{P}(1)=112.0(5)$, and $\mathrm{Pt}(2)-\mathrm{C}(1)-\mathrm{P}(1)$ $=164.1$ (6).

Chart I

Chart II

Spectroscopic data ${ }^{7}$ for 1 are consistent with it having a trans square-planar structure.

$R=2,4,6$-tri-t-butyiphenyl
When $1(0.079 \mathrm{~g}, 0.10 \mathrm{mmol})$ is reacted (eq 1) with equimolar $\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{4}(0.066 \mathrm{~g}, 0.10 \mathrm{mmol})$ in 5 mL of hexanes at room temperature under nitrogen for 2 h , red crystals of 2 are isolated ${ }^{8}$ in 65% yield by reducing the volume of the reaction solution and cooling it to $-30^{\circ} \mathrm{C}$.

An X-ray diffraction study ${ }^{9}$ shows 2 (Figure 1) to be a dinuclear
(7) 1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{R}), 1.95\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Et$)$, 1.71 (s, $18 \mathrm{H}, \mathrm{CH}_{3}$ of R), $1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of R), $1.03\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\mathrm{Et}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right.$ external standard) $\delta 223.3$ ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{Pp}}=$ ${ }_{1} 5 \mathrm{~Hz},{ }^{2} J_{\mathrm{PpP}}=658 \mathrm{~Hz}$ from ${ }^{195} \mathrm{Pt}$ satellites, $\left.\mathrm{C}=\mathrm{PR}\right), 15.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{pp}}=25 \mathrm{~Hz}\right.$, $\left.{ }_{1}^{1} J_{\mathrm{PIP}}=2753 \mathrm{~Hz}, \mathrm{PEt}_{3}\right)$; EIMS (70 eV) $m / e 790\left(\mathrm{M}^{+}\right), 755\left(\mathrm{M}^{+}-\mathrm{Cl}\right), 733$ $\left(\mathrm{M}^{+}-t-\mathrm{Bu}\right), 698\left(\mathrm{M}^{+}-(\mathrm{Cl}+t-\mathrm{Bu})\right.$).
(8) 2: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.46$ (s, $2 \mathrm{H}, \mathrm{R}$), 2.43 (m, $6 \mathrm{H}, \mathrm{CH}_{2}$), 2.09 (m, $6 \mathrm{H}, \mathrm{CH}_{2}$), $1.49\left(6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right.$ of R$), 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of R$), 1.26\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Et$), 0.82\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Et$) ;{ }^{31} \mathrm{P}\left\{{ }^{[1} \mathrm{H}\right\} \mathrm{NMR}^{3}$ (acetone- $d_{6}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ external standard) $\delta 151.3\left(\mathrm{~d}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{P} 1 \mathrm{P}}=23 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{P} 1 \mathrm{P} 4}=35 \mathrm{~Hz}^{2} J_{\mathrm{P}, \mathrm{PI}}=321 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}, \mathrm{P} 1}=100 \mathrm{~Hz}\right), 22.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{P} 4 \mathrm{P} 1}=35 \mathrm{~Hz}\right.$, $\left.{ }_{1} J_{\mathrm{P} 12 \mathrm{P} 4}=4814 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}: 1 \mathrm{P} 4}=512 \mathrm{~Hz}\right),{ }_{1} 9.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{P} 2 \mathrm{P} 1}=23 \mathrm{~Hz},{ }^{1} J_{\mathrm{P} 11 \mathrm{P}_{2}}=2428\right.$ $\mathrm{Hz},{ }^{2} J_{\mathrm{P} 2 \mathrm{P} 2}=45 \mathrm{~Hz}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Pt}_{2}: \mathrm{C}, 40.25 ; \mathrm{H}, 6.78$ Found: $\mathrm{C}, 40.36 ; \mathrm{H}, 6.95$.
complex with a bridging $\mu-\mathrm{C}=\mathrm{PR}$ ligand. The atoms $\mathrm{C}(1), \mathrm{Cl}(\mathrm{a})$, $\mathrm{Cl}(\mathrm{b}), \mathrm{P}(4), \mathrm{P}(1), \mathrm{C}(2), \mathrm{Pt}(1)$, and $\mathrm{Pt}(2)$ are all coplanar within $0.134 \AA$; of the coordinated atoms, only $P(2)$ and $P(3)$ are out of this plane, the $\mathrm{Pt}(1)-\mathrm{P}(2)$ and $\mathrm{Pt}(1)-\mathrm{P}(3)$ bond vectors being approximately perpendicular to this plane. The $\mathrm{C}(1)-\mathrm{P}(1)$ distance (1.67 (1) \AA) in the $\mu-\mathrm{C}=\mathrm{PR}$ ligand is the same as the length of the $\mathrm{C}=\mathrm{P}$ double bond in $\mathrm{Ph}(\mathrm{H}) \mathrm{C}=\mathrm{PR}$, where $\mathrm{R}=2,4,6$ -tri-tert-butylphenyl. ${ }^{10}$ It is substantially longer than the $\mathrm{C} \equiv \mathrm{P}$ triple bond $(1.516(13) \AA)^{11}$ in $R C \equiv P(R=2,4,6-t r i-$ tert-butylphenyl) but is shorter than the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{P}$ single bond $\mathrm{C}(2)-$ $\mathrm{P}(1)(1.89$ (1) $\AA)$ in 2.
The $\mathrm{Pt}-\mathrm{C}$ distances to the bridging $\mathrm{C}=\mathrm{PR}$ from the inequivalent Pt atoms are significantly different; $\mathrm{Pt}(2)-\mathrm{C}(1)$ (1.89 (1) \AA) is $0.22 \AA$ shorter than $\mathrm{Pt}(1)-\mathrm{C}(1)(2.107$ (9) $\AA)$. Also the $\mathrm{Pt}-\mathrm{C}(1)-\mathrm{P}(1)$ angles are vastly different; the $\mathrm{Pt}(2)-\mathrm{C}(1)-\mathrm{P}(1)$ angle (164.1 (6) ${ }^{\circ}$) approaches linearity while $\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{P}(1)$ $\left(112.0(5)^{\circ}\right)$ is sharply bent. Thus, the geometry of the $C=P R$ ligand shows that it is not an analogue of a symmetrically bridging isocyanide as occurs in such compounds as the triangular $\mathrm{Pt}_{3}(\mu$ $\mathrm{CNR})_{3}(\mathrm{CNR})_{3}{ }^{12}$ or dinuclear $\mathrm{Cp}_{2} \mathrm{Fe}_{2}(\mu \text {-CNR })_{2}(\mathrm{CNR})_{2} .{ }^{13}$ The long nonbonding $\mathrm{Pt}(1)-\mathrm{P}(1)$ distance ($3.15 \AA$) eliminates the possibility that the $C=P R$ ligand is a four-electron donor with π-donation from the $\mathrm{C}=\mathrm{P}$ bond to $\mathrm{Pt}(1)$. Therefore, the most reasonable description of $\mu-\mathrm{C}=\mathrm{PR}$ in this complex is that of a semibridging group, which is strongly coordinated to $\mathrm{Pt}(2)$ and interacts more weakly with $\mathrm{Pt}(1)$ by accepting at $\mathrm{C}(1)$ electron donation from the more electron rich $\mathrm{Pt}(1)$ (with two PEt_{3} donor ligands) (structure E, Chart II).

Structure E of compound 2 is very similar to that (F) of $(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right) \mathrm{Pt}(\mu-\mathrm{CO}) \mathrm{Pt}^{(}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Cl})^{14}$ and $(\mathrm{Br})\left(\mathrm{PPh}_{3}\right) \mathrm{Pt}(\mu-\mathrm{CO})-$ $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Br}){ }^{15}$ both of which have been described as containing a semibridging CO ligand. As in 2, the $\mathrm{Pt}(2)-\mathrm{C}-\mathrm{O}$ angle (156 $\left.(1)^{\circ}\right)$ is very open and the $\mathrm{Pt}(2)-\mathrm{C}$ bond distance (1.901 (13) \AA) is shorter than that of $\mathrm{Pt}(1)-\mathrm{C}(2.218$ (13) $\AA){ }^{15}$ In the absence of a semibridging interaction with $\mathrm{Pt}(1)$, the $\mathrm{C} \equiv \mathrm{PR}$ ligand in 2 would be terminal and have structure G. It is not clear why the $\mathrm{C} \equiv \mathrm{PR}$ ligand in 2 and the CO in F prefer the semibridging structure.

In summary, we describe the first example of a metal complex containing a $\mathrm{C} \equiv \mathrm{PR}$ ligand. In the reported complex (Cl)$\left(\mathrm{PEt}_{3}\right) \mathrm{Pt}(\mu-\mathrm{C}=\mathrm{PR}) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (2), the $\mathrm{C} \equiv \mathrm{PR}$ is semibridging, a type of bridging that has not been observed for isocyanide ligands. The synthesis of 2 demonstrates that $C \equiv$ PR groups can be stabilized in transition-metal complexes.

Acknowledgment. H.J. was supported by a government scholarship from the Republic of Korea. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. We also thank Dr. Hans Hoffmeister for initial studies on this project.

Supplementary Material Available: Description of the data collection and structure solution, completely labeled ORTEP drawing of 2 , and tables of crystal data, positional and thermal parameters,

[^1]complete bond distances and angles, and least-squares planes for 2 (14 pages); listing of calculated and observed structure factors for 2 (20 pages). Ordering information is given on any current masthead page.

Molecular Recognition of a Pyrimidine Dimer and Photosensitized Dimer Splitting by a Macrocyclic Bis(diaminopyridine)

M. Scott Goodman and Seth D. Rose*

Department of Chemistry and Biochemistry
Arizona State University, Tempe, Arizona 85287-1604
Received July 5, 1991
Revised Manuscript Received September 27, 1991
Enzyme-substrate binding is an example of molecular recognition ${ }^{1}$ par excellence. Such recognition is a prerequisite for photorepair of pyrimidine dimers in DNA by photolyases, enzymes that bind to dimer-containing DNA in a dark reaction and subsequently split the dimer in a light-dependent step that employs a reduced flavin cofactor. ${ }^{2}$ The mode of dimer recognition by photolyases is unknown but is thought to involve contacts of the enzyme, bound across the major groove of DNA, with the cyclobutyl group of the dimer and the phosphates of the DNA backbone. ${ }^{2 a, f \text { f.i.i.k }}$ To explore the possible utility of the unique hydrogen-bonding pattern of the dimer's splayed dihydropyrimidine rings in dimer recognition and binding, we have prepared macrocycle $\mathbf{1 a}^{3}$ (Figure 1) and found that it has a high affinity for pyrimidine dimer 2 (Chart I). Analogues of the macrocycle la were found to photosensitize pyrimidine dimer splitting.

Binding of 1 a to pyrimidine dimer $2\left(1,1^{\prime}-\right.$ di- n-butylthymine cis-syn-photodimer) ${ }^{4}$ in CHCl_{3} resulted in a red shift in UV absorbance ($\lambda_{\max }=291 \rightarrow 296 \mathrm{~nm}$). Complex formation was also monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. A typical titration curve is shown in Figure 1 (upper curve). The largest shift changes occurred in the $\mathrm{N}-\mathrm{H}$ hydrogens, as a consequence of hydrogen bonding in the complex (e.g., $\Delta \delta=1.23 \mathrm{ppm}$ downfield for 1 a and 3.05 ppm for 2). Binding of 1a to 2 was clearly of $1: 1$ stoichiometry. The association constant ${ }^{5}$ was estimated by curve fitting to be on the order of $1.5 \pm 0.4 \times 10^{4} \mathrm{M}^{-1}$. Repeated titrations gave values on the same order of magnitude. Methyl

[^2]
[^0]: * Iowa State University Molecular Structure Laboratory.
 (1) Singleton, E.; Oosthuizen, H. E. Adv. Organomet. Chem. 1983, 22, 209.
 (2) The recommended Chemical Abstracts name for $C=P R$, where R is an aryl group, is (arylphosphinidene)methylene.
 (3) Yoshifuji, M.; Niitsu, T.; Inamoto, N. Chem. Lett. 1988, 1733.
 (4) Regitz, M. Chem. Rev. 1990, 90, 191.
 (5) Appel, R.; Casser, C.; Immenkeppel, M. Tetrahedron Lett. 1985, 26, 3551
 (6) Yoshida, T.; Matsuda, T.; Otsuka, S. Inorg. Synth. 1979, 19, 110.

[^1]: (9) Crystallographic data for 2: mol wt 1103.95 ; space group $P 2_{1} 2_{1} 2_{1} a$ $=14.4639$ (9) $\AA, b=16.152$ (2) $\AA, c=19.343$ (2) $\AA, V=4518.8$ (9) \AA^{3}, $d_{\text {culed }}=1.62 \mathrm{~g} / \mathrm{cm}^{3}$ for $Z=4 \mathrm{at}-50 \pm 1^{\circ} \mathrm{C}, \mu=68.2 \mathrm{~cm}^{-1}$ (Mo K α). Diffraction data were collected at $-50 \pm 1^{\circ} \mathrm{C}$ with an Enraf-Nonius CAD4 automated diffractometer. A total of 8196 reflections were collected. Of the 4227 unique data, 3548 were considered observed, having $F_{0}{ }^{2}>2.5 \sigma\left(F_{0}{ }^{2}\right)$. $R=0.029$ and $R_{w}=0.035$. Details of data collection and refinement are given in the supplementary material.
 (10) Appel, R.; Menzel, J.; Knoch, F.; Volz, P. Z. Anorg. Allg. Chem. 1986, 534, 100.
 (11) Arif, A. M.; Barron, A. R.; Cowley, A. H.; Hall, S. W. J. Chem. Soc., Chem. Commun. 1988, 171.
 (12) Green, M.; Howard, J. A. K.; Murray, M.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1977, 1509.
 (13) Albers, M. O.; Chalmers, A. A.; Kruger, G. J.; Liles, D. C.; Oosthuizen, H. E.; Singleton, E. J. Organomet. Chem. 1986, 306, 385.
 (14) Bender, R.; Braunstein, P.; Tiripicchio, A.; Tiripicchio-Camellini, M. J. Chem. Soc., Chem. Commun. 1984, 42.
 (15) Goodfellow, R. J.; Herbert, I. R.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1983, 1386.

[^2]: (1) (a) Cram, D. J. In Design and Synthesis of Organic Molecules Based on Molecular Recognition; Van Binst, G., Ed.; Springer-Verlag: New York, 1986; pp 153-172. (b) Lehn, J.-M. In Design and Synthesis of Organic Molecules Based on Molecular Recognition; Van Binst, G., Ed.; SpringerVerlag: New York, 1986; pp 173-184. Rebek, J., Jr. In Molecular Inclusion and Molecular Recognition-Clathrates II (Topics in Current Chemistry, Vol. 149); Weber, E., Ed.; Springer-Verlag: 1988; pp 190-210. (d) Rebek, J., Jr. Acc. Chem. Res. 1990, 23, 399. (e) Hamilton, A. D.; Pant, N.; Muehldorf, A. Pure Appl. Chem. 1988, 60, 533-538. (f) Zimmerman, S. C.; Zeng, Z. J. Org. Chem. 1990, 55, 4789-4791.
 (2) (a) Sancar, G. B. Mutat. Res. 1990, 236, 147-160. (b) Heelis, P. F.; Okamura, T.; Sancar, A. Biochemistry 1990, 29, 5694-5698. (c) Payne, G.; Wills, M.; Walsh, C.; Sancar, A. Biochemistry 1990, 29, 5706-5711. (d) Payne, G.; Sancar, A. Biochemistry 1990, 29, 7715-7727. (e) Jorns, M. S.; Wang, B.; Jordan, S. P.; Chanderkar, L. P.; Biochemistry 1990, 29, 552-556. (f) Husain, I.; Sancar, G. B.; Holbrook, S. R.; Sancar, A. J. Biol. Chem. 1987, 262, 13188-13197. (g) Rupert, C. S. In Molecular Mechanisms for Repair of DNA; Hanawalt, P. C., Setlow, R. B., Eds.; Plenum Press: New York, 1975; Part A, pp 73-87. (h) Li, Y. F.; Sancar, A. Biochemistry 1990, 29, 5698-5706. (i) Jordan, S. P.; Alderfer, J. L.; Chanderkar, L. P.; Jorns, M. S. Biochemistry 1989, 28, 8149-8153. (j) Jordan, S. P.; Jorns, M. S. Biochemistry 1988, 27, 8915-8923. (k) Myles, G. M.; Sancar, A. Chem. Res. Toxicol. 1989, 2, 197-226. (1) Kiener, A.; Husain, I.; Sancar, A.; Walsh, C. J. Biol. Chem. 1989, 264, 13880-13887.
 (3) The syntheses of the macrocycles will be presented elsewhere (see supplementary material). For all compounds, high-resolution FAB MS, EI MS, and/or high-resolution (400 or 500 MHz) ${ }^{1} \mathrm{H}$ NMR spectra were consistent with the assigned structures (e.g., high-resolution FAB MS of 1a: theoretical exact mass for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{~S}_{2}+\mathrm{H}^{+} 777.2489$, found 777.2485).
 (4) Groy, T.; Goodman, M. S.; Rose, S. D., manuscript in preparation.
 (5) $K_{\text {assoc }}$ may be underestimated due to self-association of 2. Also, these values may exceed the limit for accurate determination by this method. ${ }^{11}$

